Difference between revisions of "High Pressure Homogenizers"

Jump to navigation Jump to search
no edit summary
Line 49: Line 49:


===By principle and structure of the interaction chamber===
===By principle and structure of the interaction chamber===
[[File:High_Pressure_Homogenizers_principle.png|thumb|200px|right|The three-type principle of high pressure homogenization[]]
[[File:High_Pressure_Homogenizers_principle.png|thumb|200px|right|The three-type principle of high pressure homogenization]]
====First Generation: Impact Type====
====First Generation: Impact Type====
'''Cavitation nozzles:''' The main function of this nozzle is cavitation, which leads to the separation of the emulsion and thereby increases the particle size. Under the pressure of the homogenizer, the materials flow into the cavitation nozzle with a very small aperture at several times the speed of sound. Meanwhile, intense friction and collision take place between the particles and the metal valve parts. This friction reduces the service life of the equipment, and the collisions cause metallic particles to fall into the final products.  
'''Cavitation nozzles:''' The main function of this nozzle is cavitation, which leads to the separation of the emulsion and thereby increases the particle size. Under the pressure of the homogenizer, the materials flow into the cavitation nozzle with a very small aperture at several times the speed of sound. Meanwhile, intense friction and collision take place between the particles and the metal valve parts. This friction reduces the service life of the equipment, and the collisions cause metallic particles to fall into the final products.  
Line 57: Line 57:


====Second Generation: Interaction Type====
====Second Generation: Interaction Type====
[[File:High_Pressure_Homogenizers_Interaction_chamber.png|thumb|200px|right|Interaction chamber with cooling jacket[]]
[[File:High_Pressure_Homogenizers_Interaction_chamber.png|thumb|200px|right|Interaction chamber with cooling jacket]]
'''Y-type interaction chamber:''' The Y-type interaction chamber, regarded as one of the most powerful homogenization chambers to date, has been used by several manufacturers in the USA. In these systems, the flow stream is split into two channels that are redirected over the same plane at right angles and propelled into a single flow stream. High pressure promotes a high speed at the crossover of the two flows, which results in high shear, turbulence, and cavitation over the single outbound flow stream. With the unique Y-type structure, the high-speed moving materials in the high-pressure solution collide with each other, in a process that greatly improves the service life of the chamber over those with more conventional designs. The use of diamond material prevents the formation of metal particle residue.
'''Y-type interaction chamber:''' The Y-type interaction chamber, regarded as one of the most powerful homogenization chambers to date, has been used by several manufacturers in the USA. In these systems, the flow stream is split into two channels that are redirected over the same plane at right angles and propelled into a single flow stream. High pressure promotes a high speed at the crossover of the two flows, which results in high shear, turbulence, and cavitation over the single outbound flow stream. With the unique Y-type structure, the high-speed moving materials in the high-pressure solution collide with each other, in a process that greatly improves the service life of the chamber over those with more conventional designs. The use of diamond material prevents the formation of metal particle residue.
   
   
The Y-type interaction chamber is widely used in the preparation of pharmaceutical emulsions because it minimizes cavitation and produces exquisite, stable particle size and PDI (poly dispersity index) control ability. Genizer and Microfluidics Corp. are the main manufacturers of the diamond interaction chamber. At present, the Y-type diamond interaction chamber is mainly used in high-end nanotechnology, and it occupies more than 90% of the US pharmaceutical industry. Genizer’s temperature-controlled interaction chamber avoids temperature surges and enables working pressure of up to 60,000 psi.
The Y-type interaction chamber is widely used in the preparation of pharmaceutical emulsions because it minimizes cavitation and produces exquisite, stable particle size and PDI (poly dispersity index) control ability. Genizer and Microfluidics Corp. are the main manufacturers of the diamond interaction chamber. At present, the Y-type diamond interaction chamber is mainly used in high-end nanotechnology, and it occupies more than 90% of the US pharmaceutical industry. Genizer’s temperature-controlled interaction chamber avoids temperature surges and enables working pressure of up to 60,000 psi.


Low emulsification efficiency and metallic particle residue are two problems caused by homogenization chambers designed with the impact principle. When particles collide with internal metal components during the production of pharmaceutical injections, residual inert metallic particles generate. These metallic particles may gather and form larger particles. In pharmaceutical applications, this is a problem because large particles will lead to a decrease in capillary blood flow, which in turn will cause mechanical damage to tissues in the human body, causing acute or chronic inflammation. The interaction chamber solves the problems of particle residue and demulsification. However, the chamber’s internal structure means that when the products’ concentration and viscosity are high, the chamber is more prone to cause flow blocking than impact homogenizers are.


 
===By principle of pressurization===
[[File:High_Pressure_Homogenizers_direct-drive.jpg|thumb|200px|right|Internal structure diagram of direct-drive type homogenizer]]
The ultra-high pressure homogenizer needs a large thrust to push the piston in the cylinder to achieve high pressure levels. The rotating motor needs to reduce the speed, increase the torque, and convert the linear motion to obtain the linear reciprocating motion with high thrust. The principle of pressurization operates differently in direct-drive type and intensifier-type homogenizers.
'''Direct-drive type:''' The motor drives the crankshaft to move the plunger back and forth and directly pressurize the material. Multiple sets of plungers provide constant pressure, and the flow rate is high for this type of homogenizer. However, the minimum material requirements are also high, as is the amount of residual produced. The crankshaft driven by the motor needs a multi-stage gear reduction mechanism, which limits these homogenizers to only moderate efficiency and requires large unit dimensions. This homogenizer type is suitable for the food and chemical industries, as well as other applications that do not have high pressure requirements.




Navigation menu