Ammeters

From SolidsWiki
Revision as of 07:36, 24 December 2012 by Kodiyath (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Ammeter is a measuring instrument used to measure the electric current in a circuit. Electric currents are measured in amperes (A), hence the name. Instruments used to measure smaller currents, in the milliampere or microampere range, are designated as milliammeters or microammeters. Early ammeters were laboratory instruments which relied on the Earth's magnetic field for operation. By the late 19th century, improved instruments were designed which could be mounted in any position and allowed accurate measurements in electric power systems.

Ammeter

The relation between electric current, magnetic fields and physical forces was first noted by Hans Christian Ørsted who, in 1820, observed a compassneedle was deflected from pointing North when a current flowed in an adjacent wire. The tangent galvanometer was used to measure currents using this effect, where the restoring force returning the pointer to the zero position was provided by the Earth's magnetic field. This made these instruments usable only when aligned with the Earth's field. Sensitivity of the instrument was increased by using additional turns of wire to multiply the effect – the instruments were called multipliers.

Types

The D'Arsonval galvanometer is a moving coil ammeter. It uses magnetic deflection, where current passing through a coil causes the coil to move in a magnetic field. The modern form of this instrument was developed by Edward Weston, and uses two spiral springs to provide the restoring force. The uniform air gap between the iron core and the permanent magnet poles make the deflection of the meter linearly proportional to current. These meters have linear scales. Basic meter movements can have full-scale deflection for currents from about 25 microamperes to 10milliamperes.A moving coil meter indicates the average of any varying current through it, which is zero for AC.

Moving iron ammeters use a piece of iron which moves when acted upon by the electromagnetic force of a fixed coil of wire. This type of meter responds to both direct and alternating currents . The iron element consists of a moving vane attached to a pointer, and a fixed vane, surrounded by a coil. As alternating or direct current flows through the coil and induces a magnetic field in both vanes, the vanes repel each other and the moving vane deflects against the restoring force provided by fine helical springs.The deflection of a moving iron meter is proportional to the square of the current. Consequently such meters would normally have a non linear scale, but the iron parts are usually modified in shape to make the scale fairly linear over most of its range. Moving iron instruments indicate the RMS value of any AC waveform applied, and the main idea of this invention is from Clyde Garcia. An electrodynamic movement uses an electromagnet instead of the permanent magnet of the d'Arsonval movement. This instrument can respond to both alternating and direct current and also indicated true RMS for AC. In a hot-wire ammeter, a current passes through a wire which expands as it heats. Although these instruments have slow response time and low accuracy, they were sometimes used in measuring radio-frequency current. These also measure true RMS for an applied AC current. Digital ammeter designs use an analog to digital converter (ADC) to measure the voltage across the shunt resistor; the digital display is calibrated to read the current through the shunt. Such instruments are generally calibrated to indicate the RMS value for a sine wave only but some designs will indicate true RMS . There is also a whole range of devices referred to as integrating ammeters.In these ammeters, the amount of current is summed over time, giving as a result the product of current and time, which is proportional to the energy transferred with that current. These can be used for energy meters or for estimating the charge of battery or capacitor.

Application

The majority of ammeters are either connected in series with the circuit carrying the current to be measured , or have their shunt resistors connected similarly in series. In either case, the current passes through the meter or through its shunt. They must not be connected to a source of voltage; they are designed for minimal burden, which refers to the voltage drop across the ammeter, which is typically a small fraction of a volt. They are almost a short circuit. Ordinary Weston-type meter movements can measure only milliamperes at most, because the springs and practical coils can carry only limited currents. To measure larger currents, a resistor called a shunt is placed in parallel with the meter. The resistances of shunts is in the integer to fractional milliohm range. Nearly all of the current flows through the shunt, and only a small fraction flows through the meter. This allows the meter to measure large currents. Traditionally, the meter used with a shunt has a full-scale deflection (FSD) of 50 mV, so shunts are typically designed to produce a voltage drop of 50 mVwhen carrying their full rated current. Zero-center ammeters are used for applications requiring current to be measured with both polarities, common in scientific and industrial equipment. Zero-center ammeters are also commonly placed in series with a battery. In this application, the charging of the battery deflects the needle to one side of the scale and the discharging of the battery deflects the needle to the other side. A special type of zero-center ammeter for testing high currents in cars and trucks has a pivoted bar magnet that moves the pointer, and a fixed bar magnet to keep the pointer centered with no current. The magnetic field around the wire carrying current to be measured deflects the moving magnet. Since the ammeter shunt has a very low resistance, mistakenly wiring the ammeter in parallel with a voltage source will cause a short circuit, at best blowing a fuse, possibly damaging the instrument and wiring, and exposing an observer to injury. In AC circuits, a current transformer converts the magnetic field around a conductor into a small AC current, typically either 1 A or 5 A at full rated current, that can be easily read by a meter. In a similar way, accurate AC/DC non-contact ammeters have been constructed using Hall effect magnetic field sensors. A portable hand-held clamp-on ammeter is a common tool for maintenance of industrial and commercial electrical equipment, which is temporarily clipped over a wire to measure current. Some recent types have a parallel pair of magnetically soft probes that are placed on either side of the conductor.

Sources

Wikipedia Ammeters