Difference between revisions of "Mass Flow Meters"

From SolidsWiki
Jump to navigation Jump to search
(Created page with "Category:Meters, Gauges{{Knoppen}} <noinclude><!------------------------------------------------ * READ THIS FIRST * Only edit this page if you can improve the content. ...")
 
 
Line 7: Line 7:
* Please start editing this page after the /noinclude   
* Please start editing this page after the /noinclude   
* -------------------------------------------------></noinclude>
* -------------------------------------------------></noinclude>
This page is still empty. If you know something about this product, please share your knowledge with others.
[[File:Mass Flow Meters.jpg|thumb|right|Mass Flow Meters]]
'''Mass Flow Meter''', also known as an inertial flow meter is a device that measures mass flow rate of a fluid traveling through a tube. The mass flow rate is the mass of the fluid traveling past a fixed point per unit time.
The mass flow meter does not measure the volume per unit time passing through the device; it measures the mass per unit time flowing through the device. Volumetric flow rate is the mass flow rate divided by the fluid density. If the density is constant, then the relationship is simple. If the fluid has varying density, then the relationship is not simple. The density of the fluid may change with temperature, pressure, or composition, for example. The fluid may also be a combination of phases such as a fluid with entrained bubbles.

Latest revision as of 22:48, 27 December 2012


Mass Flow Meters

Mass Flow Meter, also known as an inertial flow meter is a device that measures mass flow rate of a fluid traveling through a tube. The mass flow rate is the mass of the fluid traveling past a fixed point per unit time. The mass flow meter does not measure the volume per unit time passing through the device; it measures the mass per unit time flowing through the device. Volumetric flow rate is the mass flow rate divided by the fluid density. If the density is constant, then the relationship is simple. If the fluid has varying density, then the relationship is not simple. The density of the fluid may change with temperature, pressure, or composition, for example. The fluid may also be a combination of phases such as a fluid with entrained bubbles.