514
edits
(3 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
* Please start editing this page after the /noinclude | * Please start editing this page after the /noinclude | ||
* -------------------------------------------------></noinclude> | * -------------------------------------------------></noinclude> | ||
[[File:VSI-Crusher_principle.jpg | thumb | right | Vertical Shaft Impactor ]] | |||
[[File:VSI_Crusher_principe.jpg | thumb | right | Vertical Shaft Impact Crushers Principe]] | [[File:VSI_Crusher_principe.jpg | thumb | right | Vertical Shaft Impact Crushers Principe]] | ||
[[File:VSI_Crusher_mobile.jpg | thumb | right | Mobile Vertical Shaft Impact Crusher]] | [[File:VSI_Crusher_mobile.jpg | thumb | right | Mobile Vertical Shaft Impact Crusher]] | ||
'''Vertical Shaft Impact''' crushers use a different approach involving a high speed rotor with wear resistant tips and a crushing chamber designed to 'throw' the rock against. The VSI crushers utilize velocity rather than surface force as the predominant force to break rock. In its natural state, rock has a jagged and uneven surface. Applying surface force (pressure) results in unpredictable and typically non-cubicle resulting particles. Utilizing velocity rather than surface force allows the breaking force to be applied evenly both across the surface of the rock as well as through the mass of the rock. Rock, regardless of size, has natural fissures (faults) throughout its structure. As rock is 'thrown' by a VSI Rotor against a solid anvil, it fractures and breaks along these fissures. Final particle size can be controlled by | '''Vertical Shaft Impact''' crushers (VS Impactors) use a different approach involving a high speed rotor with wear resistant tips and a crushing chamber designed to 'throw' the rock against. The VSI crushers utilize velocity rather than surface force as the predominant force to break rock. In its natural state, rock has a jagged and uneven surface. Applying surface force (pressure) results in unpredictable and typically non-cubicle resulting particles. Utilizing velocity rather than surface force allows the breaking force to be applied evenly both across the surface of the rock as well as through the mass of the rock. Rock, regardless of size, has natural fissures (faults) throughout its structure. As rock is 'thrown' by a VSI Rotor against a solid anvil, it fractures and breaks along these fissures. Final particle size can be controlled by | ||