Difference between revisions of "Positive Displacement Pumps"

Jump to navigation Jump to search
m
no edit summary
m
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Category:Pumps]]{{Knoppen}}
[[Category:Pumps]]{{Knoppen}}
<noinclude><!------------------------------------------------
* READ THIS FIRST
* Only edit this page if you can improve the content.
* Improper use of this page will lead to permanent banning.
* Please do not edit the sponsored link on the top right corner.
* Please start editing this page after the /noinclude
* -------------------------------------------------></noinclude>
[[Image:Jet_pump.jpg|thumb||right|A jet pump]]
[[Image:Jet_pump.jpg|thumb||right|A jet pump]]
 
A '''Positive Displacement Pump''' displaces a volume by physical or mechanical action.  Pumps fall into three major groups: direct lift, displacement, and gravity pumps.
A '''pump''' displaces a volume by physical or mechanical action.  Pumps fall into three major groups: direct lift, displacement, and gravity pumps.


==Types==
==Types==
Line 19: Line 11:
A positive displacement pump causes a powder to move by trapping a fixed amount of it and then forcing (displacing) that trapped volume into the discharge pipe.
A positive displacement pump causes a powder to move by trapping a fixed amount of it and then forcing (displacing) that trapped volume into the discharge pipe.


Some positive displacement pumps work   using an expanding cavity on the suction side and a decreasing cavity on  the discharge side. powder flows into the pump as the cavity on the   suction side expands and the powder flows out of the discharge as the   cavity collapses. The volume is constant given each cycle of operation.
Some positive displacement pumps work     using an expanding cavity on the suction side and a decreasing cavity   on  the discharge side. powder flows into the pump as the cavity on the   suction side expands and the powder flows out of the discharge as the   cavity collapses. The volume is constant given each cycle of   operation.


==== Positive Displacement Pump behavior and safety ====
==== Positive Displacement Pump behavior and safety ====
Positive   displacement pumps, unlike centrifugal or roto-dynamic pumps, will in   theory produce the same flow at a given speed (RPM) no matter what the  discharge pressure. Thus, positive displacement pumps are constant flow  machines. However due to a slight increase in internal leakage as the  pressure increases, a truly constant flow rate cannot be achieved.
Positive     displacement pumps, unlike centrifugal or roto-dynamic pumps, will in   theory produce the same flow at a given speed (RPM) no matter what   the  discharge pressure. Thus, positive displacement pumps are constant flow  machines. However due to a slight increase in internal leakage as the  pressure increases, a truly constant flow rate cannot be achieved.
 
A positive displacement pump must not be operated against a closed valve on the discharge side of the pump, because it has no shut-off head like centrifugal pumps. A positive displacement pump operating against a closed discharge valve will continue to produce flow and the pressure in the discharge line will increase, until the line bursts or the pump is severely damaged, or both.


A relief or safety valve on   the discharge side of the positive displacement pump is therefore  necessary. The relief valve can be internal or external. The pump   manufacturer normally has the option to supply internal relief or safety  valves. The internal valve should in general only be used as a safety  precaution, an external relief valve installed in the discharge line  with a return line back to the suction line or supply tank is  recommended.
A positive displacement pump must not be  operated against a closed valve on the discharge side of the pump,  because it has no shut-off head like centrifugal pumps. A positive   displacement pump operating against a closed discharge valve will   continue to produce flow and the pressure in the discharge line will   increase, until the line bursts or the pump is severely damaged, or   both.


A relief or safety valve on  the discharge side  of the positive displacement pump is therefore  necessary. The relief  valve can be internal or external. The pump  manufacturer normally has  the option to supply internal relief or safety  valves. The internal  valve should in general only be used as a safety  precaution, an  external relief valve installed in the discharge line  with a return  line back to the suction line or supply tank is  recommended.
==== Positive Displacement Types ====
==== Positive Displacement Types ====
[[Image:Lysholm_screw_rotors.jpg|thumb|upright|Screw pump]]
[[Image:Lysholm_screw_rotors.jpg|thumb|upright|Screw pump]]
Line 38: Line 29:
===== Rotary Positive Displacement Pumps =====
===== Rotary Positive Displacement Pumps =====
[[File:220px-Rotary_vane_pump.svg.png|thumb|Rotary vane pump]]
[[File:220px-Rotary_vane_pump.svg.png|thumb|Rotary vane pump]]
Positive   displacement rotary pumps are pumps that move powder using the   principles of rotation. The vacuum created by the rotation of the pump   captures and draws in the powders.
Positive     displacement rotary pumps are pumps that move powder using the     principles of rotation. The vacuum created by the rotation of the pump     captures and draws in the powders.  
 
'''Advantages:'''  Rotary pumps are very efficient because they naturally remove air from  the lines, eliminating the need to bleed the air from the lines  manually.
 
'''Drawbacks:''' Positive displacement rotary  pumps also have their weaknesses. Because of the nature of the pump,  the clearance between the rotating pump and the outer edge must be very  close, requiring that the pumps rotate at a slow, steady speed. If  rotary pumps are operated at high speeds, the powders will cause erosion.  Rotary pumps that experience such erosion eventually show signs of  enlarged clearances, which allow powder to slip through and reduce the  efficiency of the pump.


'''Advantages:'''    Rotary pumps are very efficient because they naturally remove air  from    the lines, eliminating the need to bleed the air from the lines    manually.


'''Drawbacks:''' Positive displacement  rotary    pumps also have their weaknesses. Because of the nature of the  pump,    the clearance between the rotating pump and the outer edge  must be  very  close, requiring that the pumps rotate at a slow, steady  speed.  If  rotary pumps are operated at high speeds, the powders will  cause  erosion.  Rotary pumps that experience such erosion eventually  show  signs of  enlarged clearances, which allow powder to slip through  and  reduce the  efficiency of the pump.


===== Reciprocating Positive Displacement Pumps =====
===== Reciprocating Positive Displacement Pumps =====
Reciprocating-type    pumps require a system of suction and discharge valves to ensure  that    the powder moves in a positive direction. Pumps in this category  range  from having "simplex" one cylinder, to in some cases "quad"  (four)  cylinders or more.  Most reciprocating-type pumps are "duplex"  (two) or  "triplex" (three) cylinder. Furthermore, they can be either  "single  acting" independent suction and discharge strokes or "double  acting"  suction and discharge in both directions. The pumps can be  powered by  air, steam or through a belt drive from an engine or motor.  This type of  pump was used extensively in the early days of steam  propulsion (19th  century) as boiler feed water pumps. Reciprocating  pumps are now  typically used for pumping highly viscous powders  including concrete and  heavy oils, and special applications demanding  low flow rates against  high resistance.


Reciprocating-type  pumps require a system of suction and discharge valves to ensure that   the powder moves in a positive direction. Pumps in this category range  from having "simplex" one cylinder, to in some cases "quad" (four)  cylinders or more.  Most reciprocating-type pumps are "duplex" (two) or  "triplex" (three) cylinder. Furthermore, they can be either "single  acting" independent suction and discharge strokes or "double acting"  suction and discharge in both directions. The pumps can be powered by  air, steam or through a belt drive from an engine or motor. This type of  pump was used extensively in the early days of steam propulsion (19th  century) as boiler feed water pumps. Reciprocating pumps are now  typically used for pumping highly viscous powders including concrete and  heavy oils, and special applications demanding low flow rates against  high resistance.
These   positive displacement pumps have  an expanding cavity on the suction   side and a decreasing cavity on the  discharge side. powder flows into   the pumps as the cavity on the  suction  side expands and the powder   flows out of the discharge as the  cavity  collapses. The volume is   constant given each cycle of operation.
 
These positive displacement pumps have  an expanding cavity on the suction side and a decreasing cavity on the  discharge side. powder flows into the pumps as the cavity on the  suction  side expands and the powder flows out of the discharge as the  cavity  collapses. The volume is constant given each cycle of operation.


Typical reciprocating pumps are:
Typical reciprocating pumps are:
* [[Plunger Pumps]] - a reciprocating plunger pushes the powder through one or two open valves, closed by suction on the way back.
* [[Diaphragm Pumps]] - similar to plunger pumps, where the plunger   pressurizes hydraulic oil which is used to flex a diaphragm in the   pumping cylinder.  
* [[Diaphragm Pumps]] - similar to plunger pumps, where the plunger   pressurizes hydraulic oil which is used to flex a diaphragm in the   pumping cylinder.  
 


==== Various Positive Displacement Pumps ====
==== Various Positive Displacement Pumps ====
The positive displacement principle applies in the following types of pumps:
The positive displacement principle applies in the following types of pumps:
* [[Progressive Cavity Pumps]]
* [[Progressive Cavity Pumps]]
* [[Diaphragm Pumps]]
* [[Diaphragm Pumps]]
* [[Screw Pumps]]
* [[Screw Pumps]]
* [[Peristaltic Pumps]]
* [[Piston Pumps]]
* [[Vertical Pumps]]
* [[Well Pumps]]
* [[Worm Pumps]]
* [[Press Pumps]]
* [[Sump Pumps]]
* [[Peristaltic Pumps]]
* [[Peristaltic Pumps]]

Navigation menu