Difference between revisions of "Transmitters"

Jump to navigation Jump to search
209 bytes added ,  06:16, 17 January 2013
no edit summary
 
Line 1: Line 1:
[[Category:Electronic Components]]{{Knoppen}}  
[[Category:Electronic Components]]{{Knoppen}}  
 
[[File:Transmitter.jpg|thumb|right|Transmitters]]
[[File:Transmitters1.JPG|thumb|right|Transmitters]]
In electronics and telecommunications a '''Transmitter''' or radio transmitter is an electronic device which, with the aid of an antenna, produces radio waves. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. In addition to their use in broadcasting, transmitters are necessary component parts of many electronic devices that communicate by radio, such as cell phones, wireless computer networks, Bluetooth enabled devices, garage door openers, two-way radios in aircraft, ships, and spacecraft, radar sets, and navigational beacons. The term transmitter is usually limited to equipment that generates radio waves for communication purposes; or radio location, such as radar and navigational transmitters. Generators of radio waves for heating or industrial purposes, such as microwave ovens or diathermy equipment, are not usually called transmitters even though they often have similar circuits.
In electronics and telecommunications a '''Transmitter''' or radio transmitter is an electronic device which, with the aid of an antenna, produces radio waves. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. In addition to their use in broadcasting, transmitters are necessary component parts of many electronic devices that communicate by radio, such as cell phones, wireless computer networks, Bluetooth enabled devices, garage door openers, two-way radios in aircraft, ships, and spacecraft, radar sets, and navigational beacons. The term transmitter is usually limited to equipment that generates radio waves for communication purposes; or radio location, such as radar and navigational transmitters. Generators of radio waves for heating or industrial purposes, such as microwave ovens or diathermy equipment, are not usually called transmitters even though they often have similar circuits.


The term is popularly used more specifically to refer to a broadcast transmitter, a transmitter used in broadcasting, as in FM radio transmitter or television transmitter. This usage usually includes both the transmitter proper, the antenna, and often the building it is housed in.
The term is popularly used more specifically to refer to a broadcast transmitter, a transmitter used in broadcasting, as in FM radio transmitter or television transmitter. This usage usually includes both the transmitter proper, the antenna, and often the building it is housed in.
An unrelated use of the term is in industrial process control, where a transmitter is a telemetry device which converts measurements from a sensor into a signal, and sends it, usually via wires, to be received by some display or control device located a distance away.
An unrelated use of the term is in industrial process control, where a transmitter is a telemetry device which converts measurements from a sensor into a signal, and sends it, usually via wires, to be received by some display or control device located a distance away.




Line 12: Line 14:


The antenna may be enclosed inside the case or attached to the outside of the transmitter, as in portable devices such as cell phones, walkie-talkies, and garage door openers. In more powerful transmitters, the antenna may be located on top of a building or on a separate tower, and connected to the transmitter by a feed line, that is a transmission line.
The antenna may be enclosed inside the case or attached to the outside of the transmitter, as in portable devices such as cell phones, walkie-talkies, and garage door openers. In more powerful transmitters, the antenna may be located on top of a building or on a separate tower, and connected to the transmitter by a feed line, that is a transmission line.




Line 19: Line 22:


An exception is made allowing the unlicensed use of low-power short-range transmitters in devices such as wireless microphones, cordless telephones, walkie talkies, Wifi and  Bluetooth,garage door openers, and baby monitors. In the US, these fall under Part 15 of the Federal Communications Commission (FCC) regulations. Although they can be operated without a license, these devices still generally must be type-approved before sale.
An exception is made allowing the unlicensed use of low-power short-range transmitters in devices such as wireless microphones, cordless telephones, walkie talkies, Wifi and  Bluetooth,garage door openers, and baby monitors. In the US, these fall under Part 15 of the Federal Communications Commission (FCC) regulations. Although they can be operated without a license, these devices still generally must be type-approved before sale.




Line 24: Line 28:
==How it works==
==How it works==
A radio transmitter is an electronic circuit which transforms electric power from a battery or electrical mains into a radio frequency alternating current, which reverses direction millions to billions of times per second. The energy in such a rapidly-reversing current can radiate off a conductor (the antenna) as electromagnetic waves (radio waves). The transmitter also piggybacks information, such as an audio or video signal, onto the radio frequency current to be carried by the radio waves. When they strike the antenna of a radio receiver, the waves excite similar (but less powerful) radio frequency currents in it. The radio receiver extracts the information from the received waves. A practical radio transmitter usually consists of these parts:
A radio transmitter is an electronic circuit which transforms electric power from a battery or electrical mains into a radio frequency alternating current, which reverses direction millions to billions of times per second. The energy in such a rapidly-reversing current can radiate off a conductor (the antenna) as electromagnetic waves (radio waves). The transmitter also piggybacks information, such as an audio or video signal, onto the radio frequency current to be carried by the radio waves. When they strike the antenna of a radio receiver, the waves excite similar (but less powerful) radio frequency currents in it. The radio receiver extracts the information from the received waves. A practical radio transmitter usually consists of these parts:
A power supply circuit to transform the input electrical power to the higher voltages needed to produce the required power output.An electronic oscillator circuit to generate the radio frequency signal. This usually generates a sine wave of constant amplitude often called the carrier wave. In most modern transmitters this is a crystal oscillator in which the frequency is precisely controlled by the vibrations of a quartz crystal.A modulator circuit to add the information to be transmitted to the carrier wave produced by the oscillator. This is done by varying some aspect of the carrier wave. The information is provided to the transmitter either in the form of an audio signal, which represents sound, a video signal, or for data in the form of a binary digital signal.In an AM (amplitude modulation) transmitter the amplitude (strength) of the carrier wave is varied in proportion to the audio signal.In an FM (frequency modulation) transmitter the frequency of the carrier is varied by the audio signal.In an FSK (frequency-shift keying) transmitter, which transmits digital data, the frequency of the carrier is shifted between two frequencies which represent the two binary digits, 0 and 1.
* A power supply circuit to transform the input electrical power to the higher voltages needed to produce the required power output.
* An electronic oscillator circuit to generate the radio frequency signal. This usually generates a sine wave of constant amplitude often called the carrier wave. In most modern transmitters this is a crystal oscillator in which the frequency is precisely controlled by the vibrations of a quartz crystal.
* A modulator circuit to add the information to be transmitted to the carrier wave produced by the oscillator. This is done by varying some aspect of the carrier wave. The information is provided to the transmitter either in the form of an audio signal, which represents sound, a video signal, or for data in the form of a binary digital signal.
:* In an AM (amplitude modulation) transmitter the amplitude (strength) of the carrier wave is varied in proportion to the audio signal.
:* In an FM (frequency modulation) transmitter the frequency of the carrier is varied by the audio signal.
:* In an FSK (frequency-shift keying) transmitter, which transmits digital data, the frequency of the carrier is shifted between two frequencies which represent the two binary digits, 0 and 1.
Many other types of modulation are also used. In large transmitters the oscillator and modulator together are often referred to as the exciter.
Many other types of modulation are also used. In large transmitters the oscillator and modulator together are often referred to as the exciter.
An RF power amplifier to increase the power of the signal, to increase the range of the radio waves.An impedance matching (antenna tuner) circuit to match the impedance of the transmitter to the impedance of the antenna (or the transmission line to the antenna), to transfer power efficiently to the antenna. If these impedances are not equal, it causes a condition called standing waves, in which the power is reflected back from the antenna toward the transmitter, wasting power and sometimes overheating the transmitter.
* An RF power amplifier to increase the power of the signal, to increase the range of the radio waves.
* An impedance matching (antenna tuner) circuit to match the impedance of the transmitter to the impedance of the antenna (or the transmission line to the antenna), to transfer power efficiently to the antenna. If these impedances are not equal, it causes a condition called standing waves, in which the power is reflected back from the antenna toward the transmitter, wasting power and sometimes overheating the transmitter.
 
In higher frequency transmitters, in the UHF and microwave range, oscillators that operate stably at the output frequency cannot be built. In these transmitters the oscillator usually operates at a lower frequency, and is multiplied by frequency multipliers to get a signal at the desired frequency.
In higher frequency transmitters, in the UHF and microwave range, oscillators that operate stably at the output frequency cannot be built. In these transmitters the oscillator usually operates at a lower frequency, and is multiplied by frequency multipliers to get a signal at the desired frequency.
==Sources==
[http://en.wikipedia.org/wiki/Transmitter Wikipedia Transmitter]

Navigation menu