5,406
edits
Line 9: | Line 9: | ||
[[File:Air Dryer.jpg|thumb|200px|Right|Air Dryer]] | [[File:Air Dryer.jpg|thumb|200px|Right|Air Dryer]] | ||
[[Image:Air Dryer 2.jpg|thumb|200px|Right|Air Dryer 2]] | [[Image:Air Dryer 2.jpg|thumb|200px|Right|Air Dryer 2]] | ||
A | A '''Air Dryer''' is a device for removing water vapor from compressed air. [[Compressed Air Dryers]] are commonly found in a wide range of industrial and commercial facilities. | ||
The process of air compression concentrates atmospheric contaminants, including water vapor. This raises the dew point of the compressed air relative to free atmospheric air and leads to condensation within pipes as the compressed air cools downstream of the compressor. | The process of air compression concentrates atmospheric contaminants, including water vapor. This raises the dew point of the compressed air relative to free atmospheric air and leads to condensation within pipes as the compressed air cools downstream of the compressor. | ||
Excessive water in compressed air, in either the liquid or vapor phase, can cause a variety of operational problems for users of compressed air. These include freezing of outdoor air lines, corrosion in piping and equipment, malfunctioning of pneumatic process control instruments, fouling of processes and products, and more. | Excessive water in compressed air, in either the liquid or vapor phase, can cause a variety of operational problems for users of compressed air. These include freezing of outdoor air lines, corrosion in piping and equipment, malfunctioning of pneumatic process control instruments, fouling of processes and products, and more. | ||
Line 51: | Line 51: | ||
==Membrane dryer== | ==Membrane dryer== | ||
Membrane | [[Membrane Dryers]] refer to a dehumidification membrane that removes water vapor from compressed air. | ||
Typically, the compressed air is first filtered with a high-quality [[Coalescing Filters|Coalescing Filter]]. This filter removes liquid water, oil and particulate from the compressed air. The water vapor–laden air then passes through the center bore of hollow fibers in the membrane bundle. At the same time, a small portion of the dry air product is redirected along the outside surface of the fibers to sweep out the water vapor which has permeated the membrane. The moisture-laden sweep gas is then vented to the atmosphere, and clean, dry air is supplied to the application. The membrane air dryers are designed to operate continuously, 24 hours per day, 7 days per week. Membrane air dryers are quiet, reliable and require no electricity to operate. | Typically, the compressed air is first filtered with a high-quality [[Coalescing Filters|Coalescing Filter]]. This filter removes liquid water, oil and particulate from the compressed air. The water vapor–laden air then passes through the center bore of hollow fibers in the membrane bundle. At the same time, a small portion of the dry air product is redirected along the outside surface of the fibers to sweep out the water vapor which has permeated the membrane. The moisture-laden sweep gas is then vented to the atmosphere, and clean, dry air is supplied to the application. The membrane air dryers are designed to operate continuously, 24 hours per day, 7 days per week. Membrane air dryers are quiet, reliable and require no electricity to operate. | ||
Some dryers are non-porous, which means they only permeate water vapor. Non-porous membranes' drying power is only a function of flow rate, pressure. The sweep flow is strictly controlled by an orifice and is not a function of temperature. | Some dryers are non-porous, which means they only permeate water vapor. Non-porous membranes' drying power is only a function of flow rate, pressure. The sweep flow is strictly controlled by an orifice and is not a function of temperature. |
edits