5,406
edits
m |
|||
Line 6: | Line 6: | ||
'''Liposome extruders''' are mainly used for the liposome formulation and achieving uniform size distributions. It is an ideal instrument to generate nanoscale liposome formulations, and to prepare exosomes and artificial cell membranes. By utilizing the tracked-etched filter membranes, the liposome extruders are capable of capturing large particles, precipitation and achieving sterile filtration. | '''Liposome extruders''' are mainly used for the liposome formulation and achieving uniform size distributions. It is an ideal instrument to generate nanoscale liposome formulations, and to prepare exosomes and artificial cell membranes. By utilizing the tracked-etched filter membranes, the liposome extruders are capable of capturing large particles, precipitation and achieving sterile filtration. | ||
A liposome is a spherical-shaped vesicle composed of phospholipid bilayers. Phospholipid bilayers are critical components of cell membranes, with hydrophilic and hydrophobic properties. In an aqueous solution, the hydrophobic ends tend to bind to each other, and spontaneously form small spherical liposomes. The liposome extruder is designed for the preparation of liposomes. It is easy to use, and has high precision particle size control ability with narrow distributions and satisfactory repeatability. So far it has been widely used in the preparations of complex injectable products, such as paclitaxel liposomes, adriamycin liposomes, amphotericin B liposomes, doxorubicin liposomes, cytarabine liposomes, and irinotecan liposomes. | |||
=Introduction= | =Introduction= |
edits